GSH-conjugation improves efficacy of Doxil against intracranial xenografts

Olaf van Tellingen, Dieta Brandsma, Chantal C.M. Appeldoorn, M. Francesca Manca, Jaap Rip, Rick Dorland, Joan M.R van Kregten, Willem J. Boogerd, Jos H. Beijnen, Pieter J. Gaillard.

The Netherlands Cancer Institute, Amsterdam, The Netherlands / to-bBB technologies BV, Leiden, The Netherlands

BACKGROUND

High-grade glioma is a uniformly fatal disease with an unmet need for better therapy. A major reason for this poor outcome is the invasive nature of gliomas. Novel therapies that target invasive brain tumor cells should be invented, but a major impediment to the delivery of adequate amounts of therapeutics is the blood-brain barrier (BBB), which is largely intact in regions where invasive cells reside. Glutathione (GSH)-conjugated PEGylated liposomes (G-Technology[®]) may be suitable vehicles for targeted delivery of small molecule cytotoxic drugs across the BBB. GSH is a natural anti-oxidant that is found at high levels in the brain and its active transporter is abundantly expressed at the BBB. Previous studies using microdialysis with an increasing % of GSH conjugated to liposomes carrying ribavirin have shown a %GSH-dependent increase of drug levels in brain interstitial fluid (up to 5-fold higher), and GSH-liposomes carrying endomorphin-1 were more effective in hot-plate tests when compared to unconjugated liposomes.

OBJECTIVES

To establish whether glutathione-conjugated liposomes carrying doxorubicin (Brain-Doxil, or 2B3-101) are efficacious in the treatment of an intracranial tumor model.

RESULTS

• In the first series, the animals received repeated administrations of unconjugated liposomes (Caelyx/Doxil) or Doxil conjugated with 3%GSH or 5%GSH, all at a dose of 5 mg/kg (n=10 per group).
• Based on the bioluminescence signal between day 0 (start of treatment) and day 10, Doxil and 3%GSH-Doxil were minimally effective at this dose, whereas the 5%GSH-Doxil demonstrated a better response.
• After day 10, some animals were lost due to tumor progression, which makes the course of the tumor growth curves beyond day 10 less accurate.
• In line with the bioluminescence results, the 5%GSH-Doxil treatment group also displayed a longer median survival (18.5 days), than 3%GSH (15.5 days), Doxil (15 days) or controls (13 days).
• In the second series, the animals received only the 5%GSH-Doxil, but at a more intense dose regimen, namely 10 mg/kg/q4d x4 or 18 mg/kg/q8d x2.
• Although some animals were lost due to effects of the treatment (n=4 for 10 mg/kg and n=2 for 18 mg/kg), most animals tolerated the treatment well.
• The median survival was significantly better in both treatment arms compared to the control group (15 days), whereas there was a trend towards a better survival for the 18 mg/kg/q8d x2 group (24 days) relative to 10 mg/kg/q4d x4 (23.5 days).
• This latter schedule will be employed to confirm these results using a second independent intracranial tumor model.

CONCLUSION

GSH conjugation of Caelyx/Doxil results in a more efficacious treatment of intracranial U87 tumor model than unconjugated liposomes. We will perform additional experiments in order to confirm these results in other intracranial tumor models.